
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION

Journal of Sound and Vibration 289 (2006) 689–710
0022-460X/$ -

doi:10.1016/j.

�Correspon
E-mail add
www.elsevier.com/locate/jsvi
Free vibrations of a mass grounded by linear and nonlinear
springs in series

Sevda Tellı̇, Osman Kopmaz�

Department of Mechanical Engineering, College of Engineering and Architecture, Uludag University, Gorukle,

Bursa 16059, Turkey

Received 4 May 2004; received in revised form 1 November 2004; accepted 18 February 2005

Available online 31 May 2005
Abstract

In many technical applications spring-like flexible elements or real springs connected in series are used.
The operation range of these components determines whether the system behaviour has a linear or
nonlinear characteristic. In the relevant literature, there exists the knowledge how the equivalent spring is
obtained for linear springs connected serially. However, some cases occur in which one linear and one
nonlinear spring arranged in series are used. In such cases, it is not possible to define an equivalent spring
rate. This study is concerned with such a system that consists of a mass grounded two springs, one of them
linear and the other nonlinear. Two methods are developed to analyze the dynamic behaviour of system.
One method makes use of a set of differential-algebraic equations (DAE in short). The other is based on
getting a single equation of motion using relative displacement variables. For the second method, analytical
solutions are also obtained by means of the Lindstedt and the harmonic balance techniques. It is observed,
that numerical and analytical solutions found for both methods are in very good agreement when v0p1 and
0:1pxp10 where v0 is the initial deflection of nonlinear spring and x is the ratio of linear portion coefficient
of the nonlinear spring to that of the linear spring.
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1. Introduction

A mechanical system is said to be linear or nonlinear according to the type of differential
equations of motion. The linearity or nonlinearity of a conservative system is determined
essentially by the algebraic relationship between restoring forces and displacement/deflections.
This property of systems is, in fact, a concept that is related to their range of operation. The small
and large amplitude vibrations of a mathematical pendulum form a very good example to
demonstrate the basic nuance of linearity and nonlinearity. In discrete models, flexible
components producing restoring forces are represented by springs, which have linear or nonlinear
characteristics again depending upon their amount of deflection. When there are linear springs in
a system, which are connected with each other in series or parallel, they are replaced with their
equivalents as is explained in standard textbooks on vibration [1,2]. Sometimes, one of the springs
in parallel may be linear while the other is nonlinear. This case results in an equivalent, nonlinear
spring, which has a larger coefficient for its linear portion. On the other hand, if a linear spring is
connected with a nonlinear one serially, the matter of obtaining an equivalent spring becomes
more complicated. In such a case, a possible and practical way could be to fit a low-order
polynomial to the force–deflection curve of the combined spring. However, a theoretical approach
could also be developed for this problem as is done in the present paper. There exists a vast
literature on discrete systems including either linear or nonlinear springs/restoring forces.
A literature review can be found in Ref. [3] and especially in Ref. [4]. However, to the authors’
knowledge, one does not encounter publications on mechanical systems with single-degree-of-
freedom containing flexible component consisting of the combination of one linear and one
nonlinear spring in series, which sometimes occur in technical applications. This paper aims to
develop methods for analyzing such systems. Two alternative methods are presented. One of them
is based on the main idea that the equation of motion is transformed into a set of differential-
algebraic equations (henceforth, DAE in short) by introducing intermediate variables when
necessary. The second is to get a single equation of motion by means of relative displacements
similar to the first method, and to solve this equation by analytical or numerical techniques.
2. Equations of motion

2.1. System with linear springs in series

To simply show how the set of DAE associated with a system having springs connected in series
is obtained, one will start with a system including two linear springs in series, then the system with
a mixed, serially connected springs will be treated. The word ‘‘mixed’’ here is used to imply that
one of the springs in series is linear and the other nonlinear.
In Fig. 1, a mechanical system is shown, which has a mass m grounded by linear springs in

serial. In this figure, k1 and k2 are linear spring coefficients of stiffness, as y1 and y2 denote the
absolute displacements of the connection point of two spring, and the mass m, respectively. Since
the deflection of equivalent spring must be equal to the summation of individual deflections of the
two linear springs, the equivalent stiffness will be k1k2=ðk1 þ k2Þ as can be found in standard
textbooks [1,2]. The deflection of the spring k1 is y1, and that of the spring k2 is ðy2 � y1Þ, hence
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Fig. 1. System having a mass grounded by two linear springs connected in series.
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the displacement of the mass m is y1 þ ðy2 � y1Þ ¼ y2. Then, the equation of motion of the mass m
is as follows:

m €y2 þ keqy2 ¼ 0, (1)

where keq ¼ k1k2=ðk1 þ k2Þ and the dots over letters denote the derivation with respect to time.
Now, a different way leading to the same result will be followed. The equation of motion of the

system in Fig. 1 will be derived by using system’s Lagrangian in which y1 along with y2 appears as
a time-dependent variable. The potential and kinetic energies of such a system are found,
respectively, as

V ¼ 1
2
k1y

2
1 þ

1
2
k2ðy2 � y1Þ

2, (2a)

T ¼ 1
2
m _y22. (2b)

For a conservative system, the Lagrangian of system is defined as

L ¼ T � V . (3)

Hence, the equations of motions of system will be obtained from

d

dt

qL

q _yi

� �
�

qL

qyi

¼ 0; i ¼ 1; 2. (4)

The equations of motion given by Eq. (4) can be written in the explicit form as follows:

k1y1 � k2ðy2 � y1Þ ¼ 0, (5a)

m €y2 þ k2ðy2 � y1Þ ¼ 0. (5b)

It is obvious that Eq. (5a) is, in fact, a constraint equation that relates y1 to y2 or vice versa. From
Eq. (5a), the following relationship can be directly written

y1 ¼
k2

k1 þ k2
y2. (6)

If Eq. (6) is substituted into Eq. (5b), after some arithmetical manipulations, the equations of
motion is obtained as

m €y2 þ
k1k2

k1 þ k2
y2 ¼ 0 (7)

which is actually the same as Eq. (1). However, it should be noted, Eqs. (5) are a set of DAE of
index 1 [5]. At this point, one will try to derive the equations of motion in the manner similar to



ARTICLE IN PRESS

S. Tellı̇, O. Kopmaz / Journal of Sound and Vibration 289 (2006) 689–710692
what is just mentioned, differing from the former with the use of Lagrange multiplier. Starting
from that two linear springs are subjected to the same tension/compression force, one can write

k1y1 ¼ k2ðy2 � y1Þ (8a)

or

f ðy1; y2Þ ¼ k1y1 � k2ðy2 � y1Þ ¼ 0, (8b)

where f ðy1; y2Þ is a constraint on the system. The potential and kinetic energies do not change, and
Eqs. (2a,b) are still valid. However, in the way we follow, the extended Lagrangian of system will
be utilized, which is given by

L� ¼ Lþ lf , (9)

where L� and l are the extended Lagrangian and the Lagrange multiplier associated with the
problem, respectively. The extended Lagrangian can be given explicitly as follows

L� ¼ 1
2
m _y22 �

1
2
k1y

2
1 �

1
2
k2ðy2 � y1Þ

2
þ lðk1 þ k2Þy1 � lk2y2. (10)

Now, the number of dependent variables is three, and Eqs. (4) become

d

dt

qL

q _qi

� �
�

qL�

qqi

¼ 0; i ¼ 1; 2; 3, (11)

where

q1 ¼ y1,

q2 ¼ y2,

q3 ¼ l. ð12Þ

Hence, the Lagrange equations of the system are found as

lðk1 þ k2Þ þ ðk1 þ k2Þy1 � k2y2 ¼ 0, (13a)

m €y2 þ k2ðy2 � y1Þ � lk2 ¼ 0, (13b)

k1y1 � k2ðy2 � y1Þ ¼ 0. (13c)

The set of Eqs. (13) constitutes a differential-algebraic system of index 1 similar to Eqs. (5).
Considering Eq. (13) one easily concludes that l must be always zero as is confirmed by numerical
solution presented in the following part of the study.

2.2. System with linear and nonlinear springs in series

In this section, the system shown in Fig. 2 will be studied. Note that the second spring is
described by two parameters k2 and b since it has a hardening/softening cubic nonlinear
characteristic, i.e., there is the following relationship between the deflection of this spring and the
force acting upon it:

F2 ¼ k2xþ bx3 ¼ k2xþ �k2x
3, (14)



ARTICLE IN PRESS

k1 k2,β 
y1 y2

 no friction
m

Fig. 2. System with linear and nonlinear springs in series.
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where k2 and b are the coefficients associated with the linear and nonlinear portions of spring
force, and � is defined as

� ¼
b
k2

. (15)

According to the notation used in Fig. 2, x is the net deflection of nonlinear spring and defined as

x ¼ y2 � y1.

The case of b40 corresponds to a hardening spring while a negative b indicates a softening one.
Here, it is assumed that b40, �o1 and � will be employed as a perturbation or book keeping
parameter. The equations of motion of the system in Fig. 2 can easily be obtained as follows:

k1y1 � k2ðy2 � y1Þ � �k2ðy2 � y1Þ
3
¼ 0, (16a)

m €y2 þ k2ðy2 � y1Þ þ �k2ðy2 � y1Þ
3
¼ 0. (16b)

Again, one encounters a set of DAEs of index 1, which can be solved numerically by using any
ODE-solver like any version of the Runge–Kutta algorithms.
Let the new (intermediate) variables u and v be defined as follows:

y1 :¼ u, (17a)

y2 � y1 :¼ v. (17b)

Then, Eq. (16) can be put into a different form

k1u� k2v� �k2v
3 ¼ 0, (18a)

mð €uþ €vÞ þ k2vþ �k2v
3 ¼ 0. (18b)

Solving Eq. (18a) for u yields

u ¼ xvþ �xv3, (19)

where

x ¼
k2

k1
. (20)

If Eq. (19) is differentiated twice with respect to time and substituted into Eq. (18b) one finds

mð1þ xþ 3�xv2Þ€vþ 6m�xv_v2 þ k2vþ �k2v
3 ¼ 0, (21)

where the dots over letters show time derivations.
The problem of solving Eqs. (16) is reduced to solving Eq. (21). It is interesting to observe that a

term proportional to velocity squared appears, suggesting that the system contains a dissipative
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element although this is not the case. Eq. (21) can be considered as a kind of the Duffing equation
whose mass and linear spring coefficients are time dependent. If one defines

MðtÞ :¼m ð1þ xþ 3�xv2Þ,

KðtÞ :¼ k2 þ 6m�x_v2 (22)

then Eq. (21) can be written as

MðtÞ€vþ KðtÞvþ �k2v
3 ¼ 0 (23)

since both of the coefficients defined by Eq. (22) are always positive, no matter whether v and _v are
positive or not. Consequently, the solution of Eq. (23) may have quasi-harmonic or periodic
motion. The existence of such a motion is immediately concluded for the reason that the system
under study is conservative, that is, it does not include any dissipating element such as dry friction
or any other.
Once the variable v is found by solving Eq. (21) analytically or numerically, the u values can

easily be obtained from Eq. (19). Then, making inverse transformations by Eqs. (17), the original
variables y1 and y2 are reached. The Lagrangian equations of motion can be rederived using the
newly introduced variables u and v, along with a Lagrange multiplier. In this case, the extended
Lagrangian of the system becomes

L� ¼ 1
2
mð _uþ _vÞ2 � 1

2
k1u

2 � 1
2
k2v

2 � 1
4
�k2v

4 þ lðk1u� k2v� �k2v
2Þ. (24)

The equations of motion are obtained as follows:

mð €uþ €vÞ þ k1u� lk1 ¼ 0,

mð €uþ €vÞ þ k2vþ �k2v
3 þ lk2 þ 2l�k2v

2 ¼ 0,

k2vþ k2�v
2 � k1u ¼ 0. (25a2c)

This time, Eqs. (25) represent a system of DAEs of index 3 because it needs to be differentiated
three times with respect to time in order to get a set of ODEs. Making some arrangements,
however, it is possible to reduce this system to one of index 1. To this end Eq. (25c) is
differentiated twice with respect to time and one obtains

k1 €u� ð1þ 3�v2Þk2 €v� 6�k2v_v
2 ¼ 0. (26)

If Eq. (25b) is subtracted from Eq. (25a) the following is found:

k1ðuþ lÞ � k2ðv� lÞ � �k2ðv
3 � 3lv2Þ ¼ 0. (27)

After that Eq. (25b) is solved for €u and one finds

€u ¼ �€v�
k1

m
ðuþ lÞ. (28)
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If Eq. (28) is substituted into Eq. (26) and some arrangements are made, one arrives at

€v½k1 þ ð1þ 3�v2Þk2� þ 6�k2v_v
2 þ

k2
1

m
ðuþ lÞ ¼ 0. (29)

Consequently Eqs. (25) are replaced with the following set of equations of index 1:

€v½k1 þ ð1þ 3�v2Þk2� þ 6�k2v_v
2 þ

k2
1

m
ðuþ lÞ ¼ 0,

m €uþm€vþ k2ðv� lÞ þ �k2ðv
3 � 3lv2Þ ¼ 0,

k1ðuþ lÞ � k2ðv� lÞ � �k2ðv
3 � 3lv2Þ ¼ 0. (30)

While it is possible to solve both Eqs. (21) and (30) numerically, it was attempted to find analytical
solution for Eq. (21) to gain a better insight into the system behaviour. The following section is
devoted to the presentation of these approximate analytical solutions.

3. Analytical solutions of equation of motion

To obtain an analytical solution to Eq. (21), two different approaches were employed: The
Lindstedt method and the harmonic balance method. Before giving the analytical procedures,
saying a few words about the initial conditions will be useful. Eq. (21) is an ordinary differential
equation in v. The analytical solutions to be presented in this section will also be in terms of v.
Therefore, it seems meaningful to give the initial conditions in v. It should be emphasized that any
initial condition for v leads to different initial values of y1 and y2. For a general initial condition
vð0Þ ¼ v0, one finds

uð0Þ ¼ y1ð0Þ ¼ xv0ð1þ �v
2
0Þ,

y2ð0Þ ¼ uð0Þ þ vð0Þ ¼ ð1þ xþ x�v20Þv0. (31)

Eq. (31) relates the initial amount of relative variable v to those of the original ones. In this study, it is
assumed that _y1ð0Þ ¼ _y2ð0Þ ¼ 0) _vð0Þ ¼ _v0 ¼ 0 for all solutions, either the analytical or the numerical.

3.1. The Lindstedt solution

Eq. (21) can be written as

1þ 3�
x

1þ x
v2

� �
€vþ 6�

x
1þ x

v_v2 þ o2
evþ �o2

ev3 ¼ 0, (32)

where

o2
e ¼

k2

mð1þ xÞ
. (33)

Here, both the solution of v and natural frequency of the system that depends on the amplitude of
motion are approximated by two perturbation series to the second-order terms in � as follows [3]:

vðtÞ ¼ v0ðtÞ þ �v1ðtÞ þ �
2v2ðtÞ, (34)

o2 ¼ o2
e � �o1ðAÞ � �

2o2ðAÞ, (35)
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where A is the amplitude of vibration. This approach, of course, is based on the assumption that a
periodic motion occurs. Substituting Eqs. (34) and (35) and the time derivatives of vðtÞ including
the terms up to the second order into Eq. (32), and equating the coefficients of the �-terms of same
power yields the following group of equations:

€v0 þ o2v0 ¼ 0,

€v1 þ o2v1 ¼ �
3x

1þ x
v20 €v0 �

6x
1þ x

v0 _v
2
0 þ o1v0 � o2v30,

€v2 þ o2v2 ¼ �
3x

1þ x
v20 €v1 �

6x
1þ x

v0v1 €v0 �
6x

1þ x
v1 _v

2
0 �

12x
1þ x

_v0 _v1v0

þ o1v1 þ o2v0 þ o1v
3
0 � 3o2v20v1. ð36Þ

The solution of the first of Eqs. (36) is A0 cosðotþ c0Þ. The remaining ones have homogenous
solutions of the same form as the first has. These solutions are not taken into consideration.
Following the conventional procedure of the Lindstedt method one obtains

o2 ¼ o2
e ½1�

3
4
A2

0ðz� 1Þ�þ 3
128

A4
0�

2ð33z2 � 34zþ 1Þ�, (37a)

v ¼ A0 cosðotþ c0Þ � �
A3

0

32
ð9z� 1Þ cosð3otþ 3c0Þ

þ �2
3A5

0

1024
ð153z2 � 18z� 7Þ cosð3otþ 3c0Þ

�

þ
A5

0

1024
ð225z� 34zþ 1Þ cosð5otþ 5c0Þ

�
, ð37bÞ

where

z ¼
x

1þ x
. (38)

The unknowns A0 and c0 are found from the initial conditions for Eq. (32).

3.2. Solution by the harmonic balance technique

The main idea behind this method is that any periodic solution of Eq. (32) can be approximated
by a truncated Fourier series as follows [4]:

v ¼
XM
m¼0

Am cosðmotþmc0Þ. (39)

In this study, we take M ¼ 3 and M ¼ 5 corresponding to different series with four and six terms,
respectively, in order to examine the effect of approximation order on the solution accuracy. The
results found for M ¼ 5 were observed to be more accurate and consistent with the numerical
solution. After substituting Eq. (39) into Eq. (32) for M ¼ 3 and then for M ¼ 5 and making
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some tedious manipulations, one reaches the following results for four-term harmonic
approximation:

A0 ¼ A2 ¼ 0, (40a)

A3 ¼ ��
A3

1

32
ð9z� 1Þ �

3

16
�2A5

1z, (40b)

o2 ¼ o2
e ½1�

3
4
�A2

1ðz� 1Þ þ 9
16
�2A4

1ðz
2 � zÞ�, (40c)

v ¼ A1 cosðotþ c0Þ � �
A3

1

32
ð9z� 1Þ þ

3

16
�2A5

1z

� �
cosð3otþ 3c0Þ (40d)

and for six-term approximation

A0 ¼ A2 ¼ A4 ¼ 0, (41a)

A3 ¼ �
1
32�A

3
1ð9z� 1Þ þ 3

512�
2A5

1ð63z2 þ 110z� 13Þ, (41b)

A5 ¼
1

1024
�2A5

1ð225z2 � 34zþ 1Þ, (41c)

o2 ¼ o2
e ½1�

3
4
�A2

1ðz� 1Þ þ 3
128
�2A4

1ð33z2 � 34zþ 1Þ�, (41d)

v ¼ A1 cosðotþ c0Þ � ½
1
32
�A3

1ð9z� 1Þ � 3
512
�2A5

1ð63z2 þ 110z� 13Þ� cosð3otþ 3c0Þ

þ ½ 1
1024

�2A5
1ð225z2 � 34zþ 1Þ� cosð5otþ 5c0Þ. ð41eÞ

These relationships are obtained under the assumptions that A35A1. A1 and c0 are found from
initial conditions. Note that Eq. (41d) is the same as Eq. (37a) found by the Lindstedt method.
Obtaining the amplitudes and phase angles in both analytical solutions is quite difficult owing

to highly nonlinear relations. Therefore, two codes in MATLAB for analytical solutions were
written whose results will be presented along with pure numerical solutions in the next section.
4. Results and discussion

Two MATLAB codes were written to solve both Eqs. (21) and (30) by numerical integration,
respectively. As is mentioned in the preceding section, two additional codes in MATLAB for
analytical solutions were prepared since the amplitudes and phase angles in analytical solutions
are difficult to obtain symbolically. In this section, the analytical and numerical results are
presented in graphics and compared to each other. Furthermore, it will be studied how two non-
dimensional parameters � and x affect the system frequencies.
Before starting to present the numerical results a brief explanation appears necessary. The mass

m is equal to unity for all solutions. For the nonlinear spring the ratio of the nonlinear part �k2v
3

to the linear one k2v is �v2. If this ratio is close to or greater than 1 the nonlinearity becomes
dominant. It is clear that this condition can be reached by choosing the initial deflection vð0Þ ¼ v0
larger than 1 even if � is sufficiently small, e.g., is smaller than 1. For this reason the curves for v,
u ð¼ y1Þ and y2 ð¼ uþ vÞ were plotted for three different initial deflections for v: v0o1, v0 ¼ 1 and



ARTICLE IN PRESS

S. Tellı̇, O. Kopmaz / Journal of Sound and Vibration 289 (2006) 689–710698
v041. For each case the initial relative velocity _vð0Þ ¼ _v0 was taken to be zero. The condition of
_v0 ¼ 0 does not guarantee that _y1ð0Þ ¼ _y2ð0Þ ¼ 0, but _y1ð0Þ ¼ _y2ð0Þ. However it is assumed that
the system is at rest initially. � was set to 0.5 for Figs. 3–11, in order that the Lindstedt solution
preserves its validity with regard to � as a perturbation parameter. Additionally, three different
values were assigned to the parameter x ¼ k2=k1 : 0:1, 1 and 10; hence nine separate combinations
occur when considered along with initial deflections of three different orders. In what follows, the
nine combinations mentioned above will be treated under three basic cases regarding x values and
their subcases corresponding to different initial deflections, presenting the associated figures.
Every figure includes three graphics, and in each of these graphics three curves which represent the
numerical, the Lindstedt and the harmonic balance six-term solutions (henceforth, the NS, the LS
and HB6S in short) only for that variable. Note that the solution curves associated with Eqs. (30),
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Fig. 3. Variations of spring deflections and mass displacement over time for the parameter values

x ¼ 0:1 ðk1 ¼ 50; k2 ¼ 5Þ; v0 ¼ 0:5. (a) Deflection of nonlinear spring, v (relative displacement), (b) deflection of linear

spring, u, (c) displacement of mass, y2. ——, NS; —K—, LS; —�—, HB6S.
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i.e., the set of DAE, are not plotted in these graphics because they are observed always to be in
complete agreement with the solution curves of Eq. (21), i.e., with the NS curves. The HB6S
curves were preferred instead of the harmonic balance four-term (the solutions (the HB4S
abbreviated)) since the former provide an overall good approximation.

Case 1: x ¼ 0:1 ð( k1 ¼ 50; k2 ¼ 5Þ.
Subcase 1a: v0 ¼ 0:5 ðo1Þ. Fig. 3 is associated with this subcase. Under the given

circumstances, the initial deflection of linear spring is u0 ¼ 0:050625 by Eq. (31) and that of the
nonlinear one is 0.5. It is easily concluded that the nonlinear spring has a dominant effect on the
frequency of free vibration due to linear spring being very hard, and hence, the system behaviour
approaches to that of a system grounded only with the nonlinear spring. In such a case, numerical
and analytical solutions are expected to almost completely coincide if the perturbation is small.
v u

 

y 2
 

t t 

t 

(a)  (b)

(c)
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Fig. 4. Variations of spring deflections and mass displacement over time for the parameter values

x ¼ 0:1 ðk1 ¼ 50; k2 ¼ 5Þ; v0 ¼ 1. (a) Deflection of nonlinear spring, v (relative displacement), (b) deflection of linear

spring, u, (c) displacement of mass, y2. ——, NS; —K—, LS; —�—, HB6S.
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It is noteworthy that the system will transform into a Duffing oscillator when k1 goes to infinity.
In Figs. 3a–c, the perfect coincidence of analytical and numerical solutions is remarkable. The
system exhibits a motion resembling the ideal sinusoidal motion. However, it is not surprising
because �v20 ¼ 0:012551, that is, the nonlinearity is weak. Although it is not plotted in these
figures the HB4S agrees with the others completely.

Subcase 1b: v0 ¼ 1. The graphics in Fig. 4 belong to this case. Now, u0 ¼ 0:15 while v0 ¼ 1. The
linear spring can be viewed as a highly stiff wall, but the nonlinearity is relatively strong since
�v20 ¼ 0:5 � 12 ¼ 0:5. Therefore, one may still expect that numerical and analytical solutions be in
very good agreement with each other. Figs. 4a–c confirm this expectation.

Subcase 1c: v0 ¼ 2 ð41Þ. The plots related to this case are given in Fig. 5. Here, u0 ¼ 0:6 as
v0 ¼ 2. The maximum deflection of linear spring is about 30% of that of the nonlinear.
Furthermore, �v20 ¼ 0:5 � 22 ¼ 2, hence the nonlinearity is strong. The analytical solution,
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Fig. 5. Variations spring deflections and mass displacement over time for the parameter values

x ¼ 0:1 ðk1 ¼ 50; k2 ¼ 5Þ; v0 ¼ 2. (a) Deflection of nonlinear spring, v (relative displacement), (b) deflection of linear

spring, u, (c) displacement of mass, y2. ——, NS; —K—, LS; —�—, HB6S.
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especially the LS could differ from the NS. The reason of emphasizing on the LS is that in this
analytic solution the terms up to �2 were retained. For this solution to keep its validity more terms
must be included in the series. The HB6S curves are observed to be more close to the NS in
comparison with the LS. Since this method is not a perturbation method itself, a HB solution
containing terms of sufficient number can represent the actual response of system. What is said so
far is easily seen in Figs. 5a–c.

Case 2: x ¼ 1 ð( k1 ¼ k2 ¼ 5Þ.
Subcase 2a: v0 ¼ 0:5 ðo1Þ. Here, u0 ¼ 0:50625 while v0 ¼ 0:5. The system is weak nonlinear

because �v20 ¼ 0:0125. Consequently, the system behaves as if it is grounded via two linear springs
k1 and k2. Since the maximum spring deflections are of same order, and nonlinearity is weak, the
analytical and numerical solutions are consistent with each other, Figs. 6a–c.
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Fig. 6. Variations of spring deflections and mass displacement over time for the parameter values

x ¼ 1 ðk1 ¼ 5; k2 ¼ 5Þ; v0 ¼ 0:5. (a) Deflection of nonlinear spring, v (relative displacement), (b) deflection of linear

spring, u, (c) displacement of mass, y2. ——, NS; —K—, LS; —�—, HB6S.
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Subcase 2b: v0 ¼ 1. In this case u0 ¼ 1:5. The nonlinearity has an effect that cannot be
considered negligible. It is seen in Figs. 7a–c the solution curves slightly separate from each other
except the points where they intersect the time axis. This means that the analytical solutions
estimate the free vibration period very good, i.e., the LS and the HB6S prove to be satisfactory
approximations under given conditions.

Subcase 2c: v0 ¼ 2 ð41Þ. Here, u0 ¼ 6. As it is obvious from Figs. 8a–c the agreement among
different solution curves is seriously lost. The nonlinearity is strong. The numbers of terms in both
the LS and the HB6S are no more sufficient. The two series solution estimate the vibration period
greater than it must be; hence a phase shift is observed.

Case 3: x ¼ 10 ð( k1 ¼ 5; k2 ¼ 50Þ.
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Fig. 7. Variations of spring deflections and mass displacement over time for the parameter values

x ¼ 1 ðk1 ¼ 5; k2 ¼ 5Þ; v0 ¼ 1. (a) Deflection of nonlinear spring, v (relative displacement), (b) deflection of linear

spring, u, (c) displacement of mass, y2. ——, NS; —K—, LS; —�—, HB6S.
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Fig. 8. Variations of spring deflections and mass displacement over time for the parameter values

x ¼ 1 ðk1 ¼ 5; k2 ¼ 5Þ; v0 ¼ 2. (a) Deflection of nonlinear spring, v (relative displacement), (b) deflection of linear

spring, u, (c) displacement of mass, y2. ——, NS; —K—, LS; —�—, HB6S.

S. Tellı̇, O. Kopmaz / Journal of Sound and Vibration 289 (2006) 689–710 703
Subcase 3a: v0 ¼ 0:5 ðo1Þ. Here, u0 ¼ 5:0625. The deflection of linear spring is ten times larger
than that of the nonlinear. Therefore the time history of free vibration is determined mainly by the
linear spring. The nonlinearity is weak. As a consequence of these facts all solution curves are in
perfect agreement as seen in Figs. 9a–c.

Subcase 3b: v0 ¼ 1. In this case u0 ¼ 15. As is in the previous case the linear spring has a
deflection quite larger than the others. There is moderate nonlinearity in the system. The solution
curves vary similar to the subcase 2a as in Figs. 10a–c. The approximate solutions provide reliable
period estimation although they are not in complete coincidence with the numerical.

Subcase 3c: v0 ¼ 2 ð41Þ. Here, u0 ¼ 60. The nonlinearity is strong. However the linear spring
has a position determining the attitude of the system. The deviation of the analytical solution
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Fig. 9. Variations of spring deflections and mass displacement over time for the parameter values

x ¼ 10 ðk1 ¼ 5; k2 ¼ 50Þ; v0 ¼ 0:5. (a) Deflection of nonlinear spring, v (relative displacement), (b) deflection of linear

spring, u, (c) displacement of mass, y2. ——, NS; —K—, LS; —�—, HB6S.
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curves from the numerical is very clear although the phase shift does not draw attention within
first several periods of motion. For the intermediate values of deflections and mass displacement
the analytical approximations will lead to erroneous results unless they are improved by
increasing the number of terms included, Figs. 11a–c.
The HB4S and HB6S curves were observed to considerably differ from each other

when v0X1. For making a comparison between two series of different number of terms Figs.
12a–e were plotted for x and v0 values chosen in this paper. For x ¼ 0:1 both series are similar in
shape but the HB4S has a smaller period, Fig. 12e. Therefore there occurs a shift between the
curves.
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x ¼ 10 ðk1 ¼ 5; k2 ¼ 50Þ; v0 ¼ 1. (a) Deflection of nonlinear spring, v (relative displacement), (b) deflection of linear

spring, u, (c) displacement of mass, y2. ——, NS; —K—, LS; —�—, HB6S.
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Fig. 13 shows how the non-dimensional frequency of system changes with � and x when v0 ¼ 1.
It is noticeable that for the values xX1 the ratio o=oe remains almost constant such that even �
has no serious effect on the relative frequency. However, for xo1 the influence of � (i.e., the
nonlinearity) becomes observable, especially for j�j ¼ 0:5.
In Fig. 14 the variation of the amplitude A0 of the first term in the LS with respect to � and x is

plotted for v0 ¼ 1. In contrast with the frequency, � affects the amplitude A0 significantly for xX1.
For 0:5XxX0:1 � has practically no influence on the amplitude of the zero-order term. Finally, in
Fig. 15 the variation of the amplitude A0 with � and x is depicted provided that y20 ¼ u0 þ v0 ¼ 1.
Here, the effect of � on the amplitude is very weak while a decrease in x leads to increased
amplitudes.
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Fig. 11. Variations of spring deflections and mass displacement over time for the parameter values

x ¼ 10 ðk1 ¼ 5; k2 ¼ 50Þ; v0 ¼ 2. (a) Deflection of nonlinear spring, v (relative displacement), (b) deflection of linear

spring, u, (c) displacement of mass, y2. ——, NS; —K—, LS; —�—, HB6S.
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5. Conclusions

In this paper it is shown that the motion of a mass grounded via linear and nonlinear springs in
series leads to a set of differential algebraic equations (DAE). However, introducing a suitable
variable that represents the deflection of nonlinear spring, one can obtain a nonlinear ordinary
differential equation (ODE). Once this equation is solved the original variables of problem are
reached by inverse transformations. In this study it is assumed that the system is at rest initially.
The set of DAE in new variables was solved using ode15s that is a built-in ODE-solver in
MATLAB. The ODE was also solved by means of the same code. Beside the numerical solution of
the ODE two analytical approximate solutions were developed. One of them is based on the well-
known Lindstedt method that assures eliminating secular terms. For the other solution the



ARTICLE IN PRESS

0 1 2 3 4 5 6
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a)

v 

0 1 2 3 4 5 6
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

v 

t 

0 1 2 3 4 5 6
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

v 

t 

0 1 2 3 4 5 6
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

v 

t 

0 1 2 3 4 5 6
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
v 

t 

t 

(b)

(c) (d)

(e)

Fig. 12. Variation of relative displacement v (¼ deflection of nonlinear spring) according to two harmonic balance
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Fig. 13. Relative system frequency with respect to � and x.

Fig. 14. Variation of amplitude A0 of zeroth-order approximation in the Linstedt’s method with � and x under the

assumption of a constant value of v0 ¼ 1.
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harmonic balance method was employed. The Lindstedt solution includes the terms up to second
order in � while two other series developed using the HB method contain first four, and six terms,
respectively, for comparison purposes.
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Fig. 15. Variation of amplitude A0 of zeroth-order approximation in the Linstedt’s method with � and x under the

assumption of a constant value of y20 ¼ 1.
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When Eqs. (37b) and (41e) are compared with each other it is realized that the coefficients
(amplitudes) of the harmonics of third order are different in these two solutions whereas those of
the harmonics of first and fifth order are completely same. Though it is not given here, it is
observed that the correcting terms are added to the amplitudes of the harmonics of both third and
fifth order when the number of terms in the HBM is increased to seven. It is obvious that the
seventh-order harmonic also appears in this case. As a result, when taking the terms of adequate
number, the HBM solutions are observed to be in full agreement with the Lindstedt solution,
which would be expected since both approaches are based on the common assumption that a
periodic solution exists although the ideas beyond both techniques are quite different.
Another noteworthy point is that both Eq. (37b) by the Lindstedt method and Eqs. (40d) and

(41e) by the HBM, all of which are expressed in v, do not include the harmonics of even order. It is
a well-known fact that this is the case for a single-degree-of-freedom system having a cubic
nonlinear spring/restoring force characteristic as is explained in many standard textbooks on
nonlinear vibrations [1,3]. However, that the solution for v has no harmonics of even order, does
not mean that the absolute displacement y2 ¼ uþ v does not include even-order harmonics.
Although � is considered as a perturbation indicator one easily notices from the characteristic of

nonlinear spring that the initial deflection plays an important role in determining the range of
validity of the Lindstedt solution because the assumption that the terms of higher order than zero
have small contribution into the solution underlies this method. If this assumption is violated due
to large deflections of nonlinear spring the LS must include terms of sufficient number to keep its
validity. The HB solution is different from the LS regarding the ideas they are based on. From
Figs. 3 to 11 it is concluded that the LS and HB6S in their present forms derived in this paper are
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satisfactory approximations for the system under study regarding both the period and the
amplitude of motion provided that v0p1 and 0:1pxp10.
References

[1] L. Meirovitch, Elements of Vibration Analysis, McGraw-Hill, New York, 1975.

[2] A. Dimarogonas, Vibration for Engineers, Prentice-Hall, Englewood Cliffs, NJ, 1996.

[3] P. Hagedorn, Nichtlineare Schwingungen, Akademische Verlagsgesellschaft, Wiesbaden, 1978.

[4] A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations, Wiley, New York, 1979.

[5] R.E. Beardmore, Y.H. Song, Differential-algebraic equations: a tutorial review, International Journal of Bifurcation

and Chaos 8 (7) (1998) 1399–1411.


	Free vibrations of a mass grounded by linear and nonlinear springs in series
	Introduction
	Equations of motion
	System with linear springs in series
	System with linear and nonlinear springs in series

	Analytical solutions of equation of motion
	The Lindstedt solution
	Solution by the harmonic balance technique

	Results and discussion
	Conclusions
	References


